Balanced Milstein Methods for Ordinary SDEs

نویسندگان

  • Christian Kahl
  • Henri Schurz
چکیده

Convergence, consistency, stability and pathwise positivity of balanced Milstein methods for numerical integration of ordinary stochastic differential equations (SDEs) are discussed. This family of numerical methods represents a class of highly efficient linear-implicit schemes which generate mean square converging numerical approximations with qualitative improvements and global rate 1.0 of mean square convergence, compared to commonly known numerical methods for SDEs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stabilized Milstein Type Methods for Stiff Stochastic Systems

In this paper we discuss Milstein type methods with implicitness for solving Itô stochastic differential equations (SDEs). For different Milstein type methods, the regions of mean-square (MS) stability are examined. The drift implicit balanced Milstein (DIBM) method and the semi-implicit balanced Milstein (SIBM) method are proposed in this paper. The obtained results show that the MS-stability ...

متن کامل

Split-step Forward Milstein Method for Stochastic Differential Equations

In this paper, we consider the problem of computing numerical solutions for stochastic differential equations (SDEs) of Itô form. A fully explicit method, the split-step forward Milstein (SSFM) method, is constructed for solving SDEs. It is proved that the SSFM method is convergent with strong order γ = 1 in the mean-square sense. The analysis of stability shows that the mean-square stability p...

متن کامل

Report Number 09/19 On the existence and the applications of modified equations for stochastic differential equations by K.C.Zygalakis

In this paper we describe a general framework for deriving modified equations for stochastic differential equations (SDEs) with respect to weak convergence. Modified equations are derived for a variety of numerical methods, such as the Euler or the Milstein method. Existence of higher order modified equations is also discussed. In the case of linear SDEs, using the Gaussianity of the underlying...

متن کامل

Numerical solution of second-order stochastic differential equations with Gaussian random parameters

In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...

متن کامل

Better Numerical Approximation for Multi-dimensional SDEs

Today, better numerical approximations are required for multidimensional SDEs to improve on the poor performance of the standard Monte Carlo integration. Usually in finance, it is the weak convergence property of numerical discretizations, which is most important, because with financial applications, one is mostly concerned with the accurate estimation of expected payoffs. However, recent studi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Monte Carlo Meth. and Appl.

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2006